
Experimental Study on Microservices Orchestration
with Amazon Step Function

1st Siyang Zhang
Khoury College of Computer Sciences

Northeastern University
Vancouver, BC, Canada

zhang.siyan@northeastern.edu

2nd Chen Qiu
Khoury College of Computer Sciences

Northeastern University
Vancouver, BC, Canada

qiu.chen1@northeastern.edu

3rd Huaxing Wang
Khoury College of Computer Sciences

Northeastern University
Vancouver, BC, Canada

wang.huax@northeastern.edu

4th Imdadul Al Imraan
Khoury College of Computer Sciences

Northeastern University
Vancouver, BC, Canada

imraan.i@northeastern.edu

5th Michal Aibin
Khoury College of Computer Sciences

Northeastern University
Vancouver, BC, Canada
m.aibin@northeastern.edu

Abstract—Serverless computing has become widespread in
today’s tech industries. Compared to traditional cloud computing,
it allows developers to build and run applications without man-
aging servers. The Function-as-a-Service(FaaS) as an example of
this topic usually requires orchestration to be applied for the
application. AWS Step Function is one example. Although FaaS
is not the only option for building a service, its orchestration
feature provides convenience to developers. However, a major
concern is how we know this is the best option to choose
compared to other approaches like microservices and event-
driven applications. To shed light on this matter, we evaluate
the performance of applications built by FaaS orchestrator AWS
Step Functions(ASF) for both Express and Standard workflow,
event-driven. These four types of applications aim to implement
an order booking service with different architectures. Our results
evaluate the performance of these four types of workflows, from
the experiments we can find the specialty in performance. In
Express workflow, the results show that it’s suitable for short-
term, event-based applications with multiple states, and the
performance is greatly affected by Lambda functions within
a workflow. As for Standard Workflow, it’s suitable for long-
running, durable application workflow, its API could offer more
detailed information for logging. For the Event-Driven approach,
it is easier to implement but not as good as step function in terms
of performance and cost, also it is hard to track stage and handle
errors.

Index Terms—Microservice Orchestration, Workflow, Server-
less, Amazon Web Services, AWS Step Function, Event-Driven
AWS

I. INTRODUCTION

Serverless computing, and in particular, the ”Function as a
Service” (FaaS) paradigm, has taken the industry by storm.
AWS(Amazon Web Services) Step Function [1] is the most
mature and performant project in the market: According to
the validation, ASF appears to be the most efficient service for
both short and long-running orchestrations. However, there is
a lack of research on the comparison of the pros and cons with
other more traditional approaches, like microservice and event-
driven applications. Even though a serverless solution is cost-

effective and eases resource management, these unclarities
could be hindering its wide adoption by potential users. After
we dig into the current research papers, we find that there
are previous experiments that checked the validity of the
proposed models by a limited number of applications deployed
on AWS, the research mostly ranges in AWS Functions itself,
it lacks comparison with external application architectures.
There could be many different cases of implementing FasS
services. Thus, our research aims to fill the gap in the range
of performance reviews between ASF and other workflow
approaches.

To complete our research topic and explore and come up
with a solution to our problem, we need to build and deploy
an application based on ASF. For the testing application, we
planned to come up with a more centralized app that contains
enough serverless functions to make sure the testing service
itself has enough variables to provide the metrics we are going
to need. These potential microservices could be a booking
order service, a payment verification service, and a delivery
service. Of course, to better optimize our results, we need to
carefully design and compare the cost results of different apps
and services.

This paper focuses on examining Step Function’s [2] role as
the orchestrator to manage the workflow and organize multiple
AWS services and functions based on demand, especially
combined with microservices deployment in the first place.
As well as the performance comparison with other approaches
including event-driven and microservices.

For this paper, section two is literature review on re-
lated works, we reviewed articles about the Microservices
Workflow and Serverless Framework and Performance and
cost of Serverless Applications. Section three is about the
problem statement, we discussed problem background, our
own research approach, our objectives and the innovation.
Section four is about the application we built, experiment
setup, experiment parameters. Section five is experiment and

section six is experiment results. Section seven is conclusion.

II. LITERATURE REVIEW ON RELATED WORKS

A. Microservices Workflow and Serverless Framework

According to the study [3] on architecture patterns for
microservices, where it uses a catalog of microservice archi-
tecture patterns to analyze the advantages and disadvantages
of different patterns based on implementations, it finds that the
structure-oriented orchestration/coordination and storage pat-
tern is used to address the concerns on the interaction among
components and data management, while the deployment
pattern takes advantages of the container or VM deployment to
link microservices with the deployment strategies, contributing
to the research focus on continuous development, integration,
and deployment as DevOps framework. This paper also leaves
some open issues such as the comparison study between SOA
and microservices on different views and the problems raised
especially when trying to employ microservices in a large
growing system, which enlightens our study on using Step
Function to manage microservices workflows [3].

Another review study [4] on serverless frameworks performs
evaluating multiple serverless frameworks based on their per-
formance from software development phases, where it finds
two development directions on current frameworks, the first is
the necessity of serverless framework to integrate with cloud
application management framework to manage applications;
the second trend involves the improvement on current server-
less frameworks to be more independent of a cloud platform
where model-driven application management may help, but it
requires the assistance of abstraction mechanism and language
to meet the demands. Next, it reveals a series of challenges
faced during software development, which inspires our study
on how this ideal abstraction framework should be like to be
independent of current AWS technologies and Amazon state
language.

This paper [5] proposes an Abstract Function Choreogra-
phy Language(AFCL) for serverless workflow specification to
avoid vendor lock-in and limited support for important data
flow and control-flow constructs. AFCL is a YAML- based
language that supports a rich set of constructs to express
advanced control-flow and data-flow.

There are also other similar function orchestration services
or function choreographers offered by other cloud providers
such as Composer by IBM Cloud® built on Apache Open-
Whisk [6] [7], Workflows by Google Cloud [8] and Durable
Functions by Microsoft Azure [9]. The survey named ”Secure
FaaS orchestration in the fog: how far are we?” [10] discussed
and compared all those function orchestration services in
detail.

B. Performance and cost of Serverless Applications

Research [11] has been done to investigate the benefit of
using the AWS step function in terms of cost and performance.
The paper introduces experiments to test the 1. effect of
lambda function on AWS step functions, the test contains
different allocated memory sizes and startup types (warm start

and cold start); 2. State transition duration in workflow, there
are three parts needed to be measured, the state transition
duration, number of states, and execution duration ;3. For
the load part, the experiment focuses on the payload size
which is the amount of data the AWS step function will be
processing; The results show that [11] [12]: cold start latency
decreases when lambda memory size increases; AWS step
function leads to a lower cost due to less state transition times
in express workflow. But there are still some gaps we need
to fill [11]: 1. the research did not address the performance
difference between using AWS step function application and
traditional event based application, or code based application.
2. The application used in the experiment is a data processing
pipeline, a more common application (e-commerce) should be
tested in terms of the performance and cost.

A blog post from dashbird [13] compared different cheaper
function orchestration services provided by AWS themselves
such as EventBridge, DynamoDB Streams, and Lambdas. It
also mentioned various shortcomings of those services. One
major piece of information they missed in the blog post is the
performance comparisons of those services.

C. Summary

From our literature review, we find that the current gap is
located in the price and cost model of AWS Step Functions,
the accuracy and prediction correctness still have space to
improve. The lack of granular billing and execution details
offered by the providers makes the development and evaluation
of serverless applications challenging for AWS users. There-
fore, we want to do research on this topic and try to come
up with an optimization for the current cost billing model, to
provide more information related to billing and orchestrator
options for developers.

III. PROBLEM STATEMENT

A. Problem background

For developers, what kind of architecture they chose to
build their services depends on many aspects and metrics.
Event based applications, API gateway and microservice or-
chestration are different ways to coordinate actions across a
distributed system. Each has pros and cons and is appropriate
in different circumstances.

As for event-based applications, there are several advan-
tages: 1) Decentralization: It doesn’t need a central authority
to keep an eye on an order flow process. It’s implicit work-
flow connections enable independent team collaboration. 2)
Performance: Since it has no overhead of using any centralized
orchestrator and contains mostly low-level AWS services,
its performance is quite satisfactory for most developers.
However, there are some cons at the same time, namely:- a) No
effective way to monitor the process state. b) Failure handling
needs extra efforts to re-heal a failed service due to the implicit
connection.

AWS Step Functions(ASF) seems like a cure for event-
based applications, but what are the trade-offs of using ASF

orchestrator and how much exactly will developer benefit from
using orchestrator are still not addressed.

There is little research talking about the performance dif-
ference between AWS step function and other approach ap-
plication. Users often have a hard time figuring out which
application approach they should use to maximize their benefit.
As either AWS step function or Event-based application or
Code-based application will use AWS lambda services (some
will also be using the AWS SNS), but the performance and
outcome would be different, for AWS step function, the state
transition, number of states and execution duration will be the
factor affecting the performance.

B. Our research approach

To dive deep into the difference between the four service
architectures (ASF express, ASF standard, Event-based, Code-
based), we are going to build a typical e-commerce service ap-
plication as shown in the Figure 1 for each of the architectures.
For ASF applications, we also have a detailed comparison
between Standard and Express workflows.

Once the applications are ready, we can run many different
tests based on the input load, and processing data types to get
the metrics we need to optimize the cost model. One major
task is to take full advantage of the retry handling of ASF,
to find out how much performance it can improve compared
to the Native AWS(event-driven) application and Code-based
application.

After we have collected enough data, we will try to improve
the optimizing algorithms in one of our literature reviews.
By continuing their work and coming out with our own
optimization, hopefully, our research can fill the gap and solve
this issue.

Besides, the former experimental study on the Amazon
step function is quite limited, we extend their research on
the Amazon step function’s performance on data pipeline
processing to the microservices orchestration area. We also
compare the workflow orchestration application implemented
by the Amazon step function with event-based architecture to
evaluate the performance of the Amazon step function in a
more comprehensive way.

C. Set the aims and objectives

The limitation of the research we discovered in the previous
literature review is that some researchers have come up with
an approach to improve the cost prediction accuracy. Still,
the experiment is based on certain types of applications, so it
may not fit all cases. Moreover, the research doesn’t provide
insights on how to trade off between a limited budget and
performance. So the innovation part of our research project is
that we are going to combine the comparison of both cost and
performance, by optimizing the cost model, we can provide
developers with enough data to help them make better choices
about their service architecture.

To shed some light on ASF cost models with respect to
their performance and cost, we want to conduct a series
of experiments using a serverless data processing pipeline

application developed as both ASF Standard and Express
workflows. By comparing these two different workflows, we
hope to figure out the pros and cons of these workflow types
and optimize the cost model regarding performance as well.
Our final objective is to find out the most cost-effective plan
to use AWS step functions. In order to reach the final goal,
we will have several sub-goals. First, we need to build an
application using the AWS step function and AWS lambda
function to conduct the test, the application could take different
payloads and mimic real situations such as invalid input data,
and error handling. Next, we will start the experiment based
on the different parameter inputs. Finally, we will generate
the report and conclude the most cost-effective plan for using
AWS step functions.

D. Innovation

The innovation part of our research is that our project
compares four different types of workflow applications, which
aims to implement the same e-commerce service. There are
Step Functions in Express workflow, and in Standard work-
flow, we also have an event-driven application using AWS
service and a code-based microservice deployed on EC2. In
our literature review, the previous research only focused on
comparing step functions so its research doesn’t include other
types of applications. Thus, we can get the metrics from
more different aspects and can dive deep more thoroughly.
The second part of innovation is that we will compare the
difference in cost and performance among these applications,
and analyze the reason which causes these differences.

IV. EXPERIMENT DESIGN

A. Application

The application we designed in this research is a typical E-
commerce application, which involves three shopping stages:
1) Order Validation, 2) Charging Service, and 3) Shipment
Service. The application will be built in four different ways:
1) ASF standard workflow, 2) ASF express workflow, 3)Native
AWS (Event-Based), 4) API Gateway pattern (Code-Based).

Fig. 1: Application Diagram

B. Experiment Setup

1) AWS Step Function application: Figure 2 displays the
architecture of AWS Step Function application Workflow
Types: Amazon Step Function has two workflow types: Stan-
dard and Express, whose details will be explained within
Experiments section below. Both workflow execution types
will be implemented and examined in our experiments.

Application Type Parameters Workflow Type Total Run Times
Concurrent Payload 1-10001 Event Driven Execution Duration 1-1000

2 State Transition Duration Standard & Express 25
3 Execution Duration Standard & Express 25
4 Number of States Standard & Express 25
5

Step Function

Concurrent Payload Standard & Express 1-1000
6 Microservice Concurrent Payload 1-1000

TABLE I: Experiment Setup Parameters

Fig. 2: Step Function Application Diagram

2) Event-based application: To build the application in
Event-based manner, we will need mainly three AWS services:
lambda function, SNS and DynamoDB. Lambda function is
the core service in each stage, it will process the order
for different purposes. SNS is used to broadcast to next
microservice stage, it will pass the JSON payload to the next
lambda function. DynamoDB is our database which is used
to store all the information at each stage. See Figure 3 for
details.

3) Code-based application: We have an API gateway writ-
ten in Golang that will work as an orchestrator. An API
gateway is an API management tool that sits between a client
and a collection of backend services Figure 4. An API gateway
acts as a reverse proxy to accept all application programming
interface (API) calls, aggregate the various services required
to fulfill them, and return the appropriate result [20].

This API gateway is deployed on Amazon EC2 instance
t4g.small which has 2 vCPUs and 2GiB memory. This setup
will be tested against a serverless workflow orchestrator
namely Amazon Step Function.

C. Experiment parameters

Table I summarizes the six parameters to consider in
the experiments discussed below, organized in three distinct

Fig. 3: AWS microservice workflow diagram

Fig. 4: API Gateway

categories: parameters related to the effect of lambdas on
ASF execution (memory size and startup type), related to the
workflow itself (state transition duration, number of states,
total execution duration), and finally related to the input load
of the application.

1) lambdas: cold starts and warm starts make difference for
lambda and ASF performance, since we can not guarantee the
lambdas in the warm status period, we will test our workflow
in both cold start and warm start.

We could also configure the memory size of the lambda

function, which has the range from 128MB to 10,240MB,
based on our JSON payload and the operations in the lambda
functions, for our research we will set all the Lambda memory
size to be the same for better comparison.

2) Workflow: Step Function supports two workflows: Ex-
press workflow [1] is ideal for high-volume, event-processing
workloads, it has at-least-once asynchronous and at-most-
once synchronous execution models. In addition, Express
Workflow supports a high-volume execution start rate, nearly
unlimited state transitions, and unlimited execution history.
Express execution is limited to 5 minutes’ maximum duration.
Regardless of which workflow is used, ASF execution is
affected by the Lambda cold start. When a workflow is first
started, all associated Lambdas functions will start with a
configured delay, while subsequent workflow execution will
reuse the warm-started Lambdas functions. As for the billing
model, express workflow is billed by the number of executions,
duration of execution, and memory consumed.

Standard Workflows are ideal for long-running, durable,
and auditable workflows. They can run for up to a year and
you can retrieve the full execution history using the Step
Functions API, up to 90 days after your execution completes.
Standard Workflows employ an exactly-once model, where
your tasks and states are never executed more than once
unless you have specified Retry behavior in ASL. This makes
them suited to orchestrating non-idempotent actions, such as
starting an Amazon EMR cluster or processing payments.
Standard Workflows executions are billed according to the
number of state transitions processed. For reason that Standard
workflows are charged by the total number of state transitions
across all state machines, including retries, and as such the
number of state transitions should be taken into account for
our experiments, we need to investigate how ASF standard
workflow behaves when input load changes.

Payload: To evaluate the performance and stress limit, by
load size of the initial input of standard workflow

V. EXPERIMENTS

A. AWS Step Function Workflow

We design the applications to find out the effect of workflow
on the cost and performance of Amazon Step Function, the
parameters are all listed in Table I. Below is the explanation
for each parameters:

Number of States: State can take input from the previous
state, perform the task then pass output to next state [19].
In this experiment, we adjust the number of states by merg-
ing DynamoDB task states, Simple Notification Service task
states, Choice states, and Wait states into Lambda Function
task states, while maintaining the same function of the original
application, to check the number of states’ effect on the
performance of ASF workflow.

1) 17 states: Figure 2 displays the original application with-
out adjusting states, including 4 Lambda function task
states, 3 DynamoDB task states, 3 SNS task states, 3
Choice states, 1 Wait state, and necessary start, end and
success states.

2) 14 states: The workflow deletes 3 choice states and the
rest states remain the same.

3) 9 states: The workflow merges 3 DynamoDB task states
and 1 Wait state with the corresponding Lambda function
within the same component, and the rest are unchanged.

4) 6 states: The workflow merges 3 SNS task states with
corresponding Lambda function, the rest are unchanged.

State Transition Time: to evaluate the effects of transition
time between states on the cost and performance of ASF
workflows. Log data collected from ASF execution logs will
be used to measure the execution time for each state and the
transition time between states.

Execution Time: to check the execution time’s effect on the
ASF workflow’ cost and performance by comparing Express
workflow and Standard workflow.

B. Event-based application

1) build up AWS microservice: As we discussed before, the
traditional AWS services will be used to create the application.
For the validate order part, the lambda function will first check
the input payload (JSON) file, and then check if we have
enough inventory left in warehouse or not, this is done by
checking with the inventory DynamoDB. Then we will check
if the item can be delivered or not, we set certain area that can
not be reached. Next, we will update the payload data and save
the updated information into the DynamoDB and than process
to the next stage. SNS service will be used to broadcast the
payload to the charge customer service. In the charge customer
service, similarly, we will check the input data first, and then
start the charging customer process, and update the payload
data, save the updated data into the database and send to the
next service via SNS. The last stage is deliver the package and
save the final result into DynamoDB to finish the order.

2) performance test: During the busy season (Black Fri-
day), all E-commerce platform will be facing a huge amount
of order passing to their app. One of the import performance
test is to test how quick the application can process the huge
load of data. In order to test this performance, we randomly
create different amount of orders (1,100...800,900,1000) to
mimic the amount of order per second the application will
process. The way to trigger up to 1000 order at once is to
use multithreading programming in the lambda function, each
thread will be response for taking one order (we can omit the
time to create new thread), AWS lambda function will allow
up to 1000 concurrent load running at same time. In fact we
don’t have to take up all 1000 concurrent load resource as the
first few orders will be finished before taking more resources.
We will start to run all the data to four different approach and
get results.

3) cost test: Different application approaches have different
cost model, we need to first dive into each one of them
in order to have a common metrics to test. For the AWS
step function - express, the cost is based on the function
duration; it has three threshold: $0.06 per GB-hour for the
first 1,000 hours GB-hours $0.03 per GB-hour for the next
4,000 hours GB-hours $0.01642 per GB-hour beyond that. For

the AWS step function - standard, the cost is based on state
transitions; $0.025 per 1,000 state transitions. For the Event-
based application, the cost is based on the lambda function
execution duration, SNS notification times and DynamoDB
read and write requests, so the total cost would be measured in
a execution duration with the a certain cost of DynamoDB and
SNS. To complete the cost between all application approach,
the execution duration would be the variable, and the duration
we used in the performance test will also be used in this test.

C. Code-based application

In this approach, we have an API gateway written in Golang
Echo framework. Echo is a high performance, extensible,
minimalist Go web framework [21].

This API gateway accepts client requests and calls the same
lambdas as ASF workflows, gather results and send response
back to clients. We use AWS SDK for Go v2 integrate
AWS services with our API gateway [22]. This API gateway
implements the same workflows as ASF described in Figure
2. Full source code is available in the github repistory [23].

VI. EXPERIMENT RESULTS

A. Results of Step Function Workflow Experiment

Number of States: Figure 5 displays the results of the
experiment where we adjust the number of states on Express
workflow to test its effect on total running time, and findings
are listed below:

Fig. 5: Number of States Effect on Express Workflow Execu-
tion Duration

Figure 6 displays the results of the experiment where we
adjust the number of states on Standard workflow to test its
effect on total running time, and findings are listed below:

The average running time of the 17-States workflow is
3.1996s, which is slightly slower than the 14-States workflow
whose average running time is 2.82488s. It’s reasonable since
the subtle difference lies in the Choice states, because Express
workflow doesn’t store state transition information between

Fig. 6: Number of States’ Effect on Standard Workflow
Execution Time

states, therefore adjusting the number of Choice states doesn’t
have much influence on the total execution duration while only
contributing to limited improvement in performance.

The average running time of 9-States workflow and 6-States
workflow is 3.8224s and 4.11444s respectively, which should
be smaller than workflows with more states since merging Task
states within the Lambda function reduces the number of states
within a workflow, which should save State Transition Time.
One potential explanation is that Step Function orchestrates
services within workflow more efficiently and reduces the cost
of information passing among states, compared with calling
other AWS services within the Lambda function.

All four workflow’s data layout displays grouping behavior:
17-States workflow’s data lies between 2.5s to 3s and 4.5s
to 5s, 14-States workflow’s data also resides between 2.5s
to 3s and 4.5s to 5s ranges with slightly better performance.
For 9-States workflow, even though the grouping is not that
obvious, it’s still clear that most execution time is within the
range of 2.5s to 4s while outliers are more than 7s. A similar
pattern also exists in 6-States workflow where most executions
are within 3s to 4s range while outliers are around 8s. The
pattern where data points from all four workflows lie in two
major ranges demonstrates the effect of the Lambda function’s
warm/cold start on execution time.

For the Standard workflow, the average running time of the
17-States workflow is 5.061s, while in 14 states it lasts for
5.3887s. These two numbers are pretty close to each other. The
explanation is that choice state will prolong the state transition
time, but in practice, this transition time runs fast inside the
Standard workflow.

From 14 states to 9 states, the average running time
increased to 7.32609s even though the number of states
decreased. Theoretically, the running time should be shorter
with fewer states. In our experiments, the functions of the
states removed are all added to the Lambda function. The

possible reason is invoking other AWS services could be more
efficient than calling them inside the lambda. We can see from
the diagram the pattern for Standard workflow is the fewer the
number of states, the more time it runs. The range of each type
could differ17-States workflow’s run time ranges from 3.5s to
7.5s, and 14-States workflow runs between 4s to 6.5s, there’s
a subtle increase in running time. 9 states ranges from 4s to
10s while half the data resides around 8.5s. 6 states’ run times
is also following this pattern.

State Transition Time:
The experiment on State Transition Duration collects the

total transition duration for one single execution, and we
perform the experiment 25 times to draw Figure 7, Most
Express Workflow’s state transition time lies in the range from
10ms to 14ms, significantly less than Standard workflow’s
947ms average state transition time. The difference lies in the
feature of express workflow that it doesn’t store state transition
information, thus saving the transition time between states.

Fig. 7: State Transition Duration between Standard and Ex-
press Workflow

Total Execution Time:
According to Figure 8, Express workflow is executed 25

times and the average execution time of Express workflow is
3.199s which is around 37% faster than Standard workflow’s
5.061s. Since our application’s input is a JSON file to simulate
an event call, and each invocation on the application with the
given input is fast-complete, besides the idempotent action
within States like DynamoDB put operation suits Express
workflow’s at-least-once model. All the above points align
with Express workflow’s feature more closely thus explaining
the performance difference.

Fig. 8: Total Execution Duration between and Express Work-
flow

B. Results of Experiments Cross Four Applications

Performance Result:
Fig 9 shows the result of our four application total run

time in different amount of load. From 1 to 100, all four
applications showed the big jump and starts to decrease from
200 to 400, after 400 and 500, Event-based application starts
to increase dramatically, Two step function grow steadily. As
we can see, from 100 to 200, all four application have a
clearly drop, this is most because of the lambda function the
lambda function processing is shifting from cold start to warm
start, after 400 orders, number of lambda function execution
will become the bottleneck of Event-based and Code-based
approach, in this case step function has a better performance.
Within the step functions, express is better than the standard
one.

Cost Result: Fig 10 shows the cost comparison. For the
AWS step function standard, the cost is based on state
transition, if we conservatively assume that the state tran-
sition is 100, then the cost of the application is constant
$0.025/10=$0.0025. For the AWS step function express, the
cost is $0.0000166667 per second, so we could draw out a
line for the express function. For the Event-Based approach,
the cost is from three part, lambda($0.0000166667 per sec-
ond), SNS($0.5 per million notification), DynamoDB($1.5 per
million read and write pair), similarly we can draw out the
graph as well.

For the API gateway setup, t4g.small EC2 instance is used
in our experiment. This instance costs $0.0168 hourly when
rent on demand basis. We use this hourly rate to calculate the
cost for different durations.

Fig. 9: Total Run Time Analysis

VII. CONCLUSION

In the experiments between Express and Standard workflow,
we find that: adjusting the number of Choice states only
contribute subtle improvement in performance, service orches-
tration with Step Function performs better than invocation
of other AWS services within Lambda function, Express

Fig. 10: Cost Analysis

ASF’s performance is significantly influenced by the Lambda
function’ code/warm start within workflow states, Express
workflow’s feature on not storing state transition information
saves state transition time between states compared with
Standard workflow. API gateway architecture is the most cost
efficient in terms of cost and can be ported across different
cloud platforms with ease. Simple cost calculation of EC2
instance compared to ASF also helps developers predict the
cost of the services ahead of time since the costing is not
tightly coupled with the number of requests like others.

Short-term, event-based application with idempotent opera-
tion is more suitable to implement with Express workflow. In
Standard workflow, reducing the non-service state only has
little influence on the performance efficiency. The cost of
Standard workflow is also easy to track and predict. For the
Lambda Function state within, the complexity of the function
plays a major role regarding the performance. Event-Based
application is easy to implement, however, as we discussed
before, both performance and cost are not as good as the step
function. Most importantly, it is hard to trace where the stage
is, and the error handling ability is also the shortcoming of
this approach.

For future work on the Express workflow experiment,
currently, there is no available backend API to directly export
execution logs, therefore further research could add tools to
enable automatic export execution logs. Besides, the current
application is more aligned with Express workflow’s feature,
further research could be executed on applications that fit
Standard workflow more closely, to see its performance and
cost. As for the Standard workflow, we could use the standard
API to logging more detailed data to have a further dive into
the detail of each experiments we implemented. Also, the
current application we are testing contains only limited AWS
resources, there are other popular AWS services could have
relatively obvious influence on the Step Function. In the future
they could also be included as part of our applications.

For future work on the Event-Based application, we could
use another DynamoDB+SNS specifically to record the status

of each stage, which is once we finish a step we broadcast the
status for that step whether it is successful or failed, this would
trace where the order stage is. Besides, we could write another
sets of lambda function to handle the error encountering during
the process, but this can be complicated as lambda function
will likely spin in a loop which costs unnecessary resources.

REFERENCES

[1] AWS Step Functions Developer Guide,
URL:https://docs.aws.amazon.com/step-functions/latest/dg/use-cases-
orchestration.html (visited on 09/21/2022).

[2] Mukherjee, Sourav. ”Benefits of AWS in modern cloud.” arXiv preprint
arXiv:1903.03219 (2019).

[3] Taibi, D, V Lenarduzzi, and Claus Pahl. “Architectural Patterns for Mi-
croservices: A Systematic Mapping Study.” CLOSER 2018: Proceedings
of the 8th International Conference on Cloud Computing and Services
Science; Funchal, Madeira, Portugal, 19-21 March 2018 (2018).

[4] K. Kritikos and P. Skrzypek, ”A Review of Serverless Frameworks,”
2018 IEEE/ACM International Conference on Utility and Cloud
Computing Companion (UCC Companion), 2018, pp. 161-168, doi:
10.1109/UCC-Companion.2018.00051.

[5] Sasko Ristov, Stefan Pedratscher, Thomas Fahringer: AFCL: An Ab-
stract Function Choreography Language for serverless workflow speci-
fication, URL: https://doi.org/10.1016/J.FUTURE.2020.08.012

[6] Introducing serverless composition for IBM Cloud functions (no
date) IBM. Available at: http://www.ibm.com/cloud/blog/serverless-
composition-ibm-cloud-functions (Accessed: November 30, 2022).

[7] Ibm-Functions (no date) IBM-functions/composer: Composer is a
new programming model for composing cloud functions built on
Apache OpenWhisk., GitHub. Available at: https://github.com/ibm-
functions/composer (Accessed: November 30, 2022).

[8] Ibm-Functions (no date) IBM-functions/composer: Composer is a
new programming model for composing cloud functions built on
Apache OpenWhisk., GitHub. Available at: https://github.com/ibm-
functions/composer (Accessed: November 30, 2022).

[9] Cgillum Durable functions overview azure, Durable Func-
tions Overview Azure — Microsoft Learn. Available at:
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-
functions-overview?tabs=csharp (Accessed: November 30, 2022).

[10] Alessandro Bocci, Stefano Forti, Gian-Luigi Ferrari, and Antonio Brogi.
2021. Secure FaaS orchestration in the fog: how far are we? Computing
(2021), 1–32.

[11] Philipp Leitner, Erik Wittern, Josef Spillner, Waldemar Hummer,
A mixed-method empirical study of Function-as-a-Service soft-
ware development in industrial practice, Journal of Systems and
Software, Volume 149, 2019, Pages 340-359, ISSN 0164-1212,
https://doi.org/10.1016/j.jss.2018.12.013.

[12] Varia J. Best practices in architecting cloud applications in the AWS
cloud. Cloud Computing: Principles and Paradigms. 2011;18:459-90.

[13] Lin WT, Krintz C, Wolski R, Zhang M, Cai X, Li T, Xu W. Tracking
causal order in aws lambda applications. In2018 IEEE international
conference on cloud engineering (IC2E) 2018 Apr 17 (pp. 50-60). IEEE.

[14] Mathew A, Andrikopoulos V, Blaauw FJ. Exploring the cost and
performance benefits of AWS step functions using a data processing
pipeline. InProceedings of the 14th IEEE/ACM International Conference
on Utility and Cloud Computing 2021 Dec 6 (pp. 1-10).

[15] Quinn S, Cordingly R, Lloyd W. Implications of alternative serverless
application control flow methods. InProceedings of the Seventh Interna-
tional Workshop on Serverless Computing (WoSC7) 2021 2021 Dec 6
(pp. 17-22).

[16] Cutting Step-Functions Costs on Enterprise-Scale Workflows, URL:
https://dashbird.io/blog/cutting-step-functions-costs-enterprise/

[17] Geoffrey C. Fox, Vatche Ishakian, Vinod Muthusamy, Aleksander
Slominski. Status of Serverless Computing and Function-as-a-
Service(FaaS) in Industry and Research. 2017 Aug.

[18] C. Lin and H. Khazaei, ”Modeling and Optimization of Performance
and Cost of Serverless Applications,” in IEEE Transactions on Parallel
and Distributed Systems, vol. 32, no. 3, pp. 615-632, 1 March 2021,
doi: 10.1109/TPDS.2020.3028841.

[19] Open University Press. (1975). Step functions. Amazon. Re-
trieved November 30, 2022, from https://docs.aws.amazon.com/step-
functions/latest/dg/concepts-states.html

[20] What does an API gateway do? (n.d.).
https://www.redhat.com/en/topics/api/what-does-an-api-gateway-do

[21] Echo - High performance, minimalist Go web framework. (n.d.). Echo -
High Performance, Minimalist Go Web Framework. Retrieved December
2, 2022, from https://echo.labstack.com/

[22] AWS SDK for Go v2 GitHub - aws/aws-sdk-go-v2: AWS
SDK for the Go programming language. (n.d.-b). GitHub.
https://github.com/aws/aws-sdk-go-v2

[23] Imraan, A. (n.d.). GitHub - imraan-go/aws-step-api-gateway. GitHub.
https://github.com/imraan-go/aws-step-api-gateway

	Introduction
	Literature Review on Related Works
	Microservices Workflow and Serverless Framework
	Performance and cost of Serverless Applications
	Summary

	Problem Statement
	Problem background
	Our research approach
	Set the aims and objectives
	Innovation

	Experiment Design
	Application
	Experiment Setup
	AWS Step Function application
	Event-based application
	Code-based application

	Experiment parameters
	lambdas
	Workflow

	Experiments
	AWS Step Function Workflow
	Event-based application
	build up AWS microservice
	performance test
	cost test

	Code-based application

	Experiment Results
	Results of Step Function Workflow Experiment
	Results of Experiments Cross Four Applications

	Conclusion
	References

